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2 Executive	summary	

This	report	has	been	prepared	as	part	of	the	project	 ‘Preparing	Land	and	Ocean	Take	Up	from	Sentinel-3	
(LOTUS)’	Work	Package	6	‘Applications	of	new	GMES	data	in	value-adding	land	services’,	Deliverable	6.5.	

The	report	presents	a	proof-of-concept	for	how	to	use	CryoSat	drifting	orbit	radar	altimetry	data	together	
with	 hydrologic-hydrodynamic	models.	 The	 generic	 workflow	 described	 in	 LOTUS	 D6.4	 is	 applied	 to	 the	
Brahmaputra	river	system	in	South	Asia.	CryoSat	data	is	used	twice	in	this	workflow:	

1. To	update	the	river	bed	elevation	and	cross	sectional	geometry	of	the	hydrodynamic	model	
2. To	 update	 simulated	 water	 level	 states	 in	 the	 hydrodynamic	 model	 online,	 using	 data	 assimilation	

techniques.	
Results	show	that	water	surface	elevation	estimates	from	CryoSat	contain	useful	information	and	improve	
the	sharpness	and	reliability	of	hydrologic	predictions	in	this	basin.	

3 Introduction	

Space-borne	measurements	 of	 inland	water	 surface	 elevation	 from	 radar	 and	 laser	 altimetry	 have	 been	
provided	by	a	number	of	remote	sensing	missions	over	the	past	ca.	20	years.	Because	the	sampling	pattern	
of	these	missions	is	sparse	and	irregular	in	space	and	time,	such	data	has	to	be	combined	with	hydrologic-
hydrodynamic	 simulation	 models	 in	 order	 to	 fully	 exploit	 the	 information	 contained	 in	 the	 data.	 Data	
assimilation	 is	a	generic	approach	to	combine	observational	data	and	simulation	models,	which	 is	widely	
used	 in	 all	 branches	 of	 earth	 science,	 including	 atmospheric	 science,	 oceanography	 and	 hydrology.	
Assimilation	of	repeat-orbit	radar	altimetry	has	been	successfully	demonstrated	before;	however,	LOTUS	is	
one	of	the	first	projects	to	attempt	assimilation	of	drifting-orbit	(CryoSat-type)	altimetry	data	to	hydrologic-
hydrodynamic	models.	The	principal	challenge	is	that	this	type	of	mission	provides	individual	water	height	
readings	somewhere	on	the	river,	which	cannot	be	collected	into	a	time	series	at	a	so-called	virtual	station	
(VS),	as	was	the	case	with	previous	missions.	

A	number	of	recent	studies	combine	satellite	radar	altimetry	with	hydrologic	river	models	using	data	from	
repeat	orbit	satellites	such	as	Envisat,	ERS	or	Jason.	One	popular	river	 is	the	Amazon	due	to	 its	 large	size	
and	 favourable	direction	of	 flow	 in	relation	to	most	satellites’	orbits,	 for	example	Yamazaki	et	al.	 (2012).	
Other	examples	include	other	big	rivers,	such	as	the	Mekong	and	Ob	in	the	work	of	Birkinshaw	et	al.	(2014)	
where	daily	discharge	data	was	estimated	from	Envisat	and	ERS-2	altimetry.	A	combination	of	MODIS	data	
of	river	velocity	and	Envisat	water	levels	was	used	by	Tarpanelli	et	al.	(2014)	to	estimate	the	discharge	in	
the	Po	River.	Using	satellite	altimetry	data	is	particularly	attractive	over	poorly	gauged	basins	where	in-situ	
data	 is	 lacking.	 Becker	 et	 al.	 (2014)	 have	 used	 Envisat	 altimetry	 data	 in	 the	 Congo	 basin.	 Moreover,	
application	 of	 data	 from	 the	wide-swath	 drifting	 orbit	mission	 SWOT	 has	 been	 considered	 (for	 example	
Biancamaria	 et	 al.	 (2011a)	 or	 Yoon	 et	 al.	 (2012)),	 however	 only	 with	 synthetically	 generated	 data:	 The	
SWOT	mission	is	expected	to	be	launched	in	2020	NASA,	2015.	

The	CyoSat-2	data	used	 in	 this	work	have	 already	been	 shown	by	Villadsen	et	 al.	 (2015)	 to	be	useful	 to	
monitor	water	levels	in	the	Ganges	and	Brahmaputra.	There	also	exist	a	number	of	studies	using	CryoSat-2	
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altimetry	 to	extract	water	 levels	 in	 lakes,	 for	example	Kleinherenbrink	et	al.	 (2014)	or	Song	et	al.	 (2015).	
This	work	however	is	one	of	the	first	applications	of	CryoSat-2	altimetry	over	rivers,	showing	how	its	special	
drifting	orbit	can	be	used.	

In	 a	 previous	 study	 at	 DTU	 Environment,	Michailovsky	 et	 al.,	 2013	 assimilated	 Envisat	 altimetry	 data	 at	
multiple	VS	into	a	routing	model	of	the	Brahmaputra	using	an	extended	Kalman	filter	(EKF)	approach.	The	
present	study	extends	this	work	to	enable	the	assimilation	of	Cryosat	data.	The	main	modifications	are	

• The	 routing	 scheme	 is	 replaced	with	 a	 1-D	 hydrodynamic	modeling	 scheme	 based	 on	 the	 full	 Saint-
Venant	equations	 for	open	channel	 flow	(dynamic	wave).	This	scheme	simulates	 the	true	river	water	
level	anywhere	along	the	river.	

• Due	to	the	strongly	non-linear	nature	of	the	hydrodynamic	model	the	EKF	is	replaced	with	an	ensemble	
approach.	

• The	 modeling	 system	 is	 implemented	 in	 the	 DHI	 hydrologic-hydrodynamic	 simulation	 environment.	
This	environment	also	provides	a	generic	data	assimilation	toolbox,	which	gives	access	to	a	number	of	
different	ensemble-based	assimilation	routines	(please	see	LOTUS	D6.4	for	details)	

• Parameterization	of	model	and	observation	error	are	similar	to	Michailovsky	et	al.,	2013.	

4 Description	of	the	Brahmaputra	case	study	

For	 the	 Brahmaputra	 basin	 in	 South	 Asia,	 previous	work	 has	 shown	 the	 value	 of	 Envisat	 altimetry	 data	
(Michailovsky	et	al.,	2013).	The	basin	and	its	main	river,	the	Brahmaputra,	are	being	monitored	closely	by	
India	and	China,	however	almost	none	of	this	in-situ	hydrologic	data	is	publicly	available.	The	Brahmaputra	
catchment	 for	 example	 is	 considered	 a	 classified	 basin	 by	 the	 Indian	 government	 (Central	 Water	
Commission,	 2009).	 This	 situation	 highlights	 the	 importance	 of	 remote	 sensing	 data	 for	 hydrologic	
modelling	and	water	resources	management	in	the	basin,	for	instance	for	flood	forecasting	in	downstream	
Bangladesh.	Bangladesh,	a	 low	 lying	 country	 facing	 the	Gulf	of	Bengal	 in	 the	estuary	 region	of	 the	 three	
large	rivers	Ganges,	Brahmaputra	and	Meghna	(see	Figure	1),	is	often	hit	by	devastating	floods.	More	than	
90%	of	its	surface	waters	are	imported	from	beyond	the	country’s	boundaries,	i.e.	mainly	India;	however,	
mechanisms	 for	 sharing	 of	 data	 and	 information	 between	 Bangladesh	 and	 India	 are	 not	 in	 place	
(Biancamaria	et	al.,	2011b).	
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Figure	1:	Map	of	the	three	main	rivers	draining	into	the	Gulf	of	Bengal	through	Bangladesh.	The	stretch	of	
the	river	that	is	referred	to	as	“Assam	Valley”	in	the	text	is	colored	in	cyan.	

4.1 Physiography	of	the	region	

The	 course	 of	 the	 Brahmaputra	 River	 can	 be	 roughly	 divided	 into	 two	 parts:	 The	 upstream	 part	 in	 the	
Tibetan	Plateau	draining	through	the	Himalaya	into	India,	and	the	downstream	part,	which	drains	through	
the	Assam	valley	into	Bangladesh	where	it	merges	into	the	Ganges-Brahmaputra-Meghna	delta	region	and	
finally	flows	into	the	Gulf	of	Bengal.	In	the	downstream	part	(elevation	below	200	mamsl)	river	slopes	are	
mild	and	the	Brahmaputra	is	a	wide	braided	river.	In	the	upstream	part	however	the	river	width	usually	is	
below	500	meters,	and	the	river	is	often	surrounded	by	steep	slopes.	The	elevation	is	generally	above	3000	
mamsl	and	river	slopes	are	variable;	steep	gorges	alternate	with	milder	slopes	(Figure	5).	This	makes	it	hard	
to	extract	satellite	altimetry	data,	and	therefore	the	focus	of	this	study	was	on	the	Assam	valley	part	of	the	
river.	The	climate	in	the	region	is	dominated	by	the	South-Asian	monsoon,	featuring	a	strong	seasonality	of	
precipitation	with	the	rainy	season	in	the	period	from	late	June	to	September.	Precipitation	is	strongest	on	
the	south	side	of	 the	Himalayan	slopes,	while	 the	Tibetan	portion	of	 the	river	receives	 less	precipitation.	
The	hydrology	of	 the	high-elevation	portions	of	 the	basin	 is	dominated	by	 snow	accumulation	and	snow	
melt	as	well	as	glacial	dynamics.	

4.2 CryoSat-2	dataset	for	the	Brahmaputra	

We	used	CryoSat-2	level	2	altimetry	data	that	was	processed	and	provided	by	DTU	Space	in	the	framework	
of	 the	 LOTUS	 project.	 The	 basis	 for	 the	 data	 is	 the	 ESA	 baseline-b	 L1b	 20	Hz	 product.	 This	 product	was	
retracked	 by	 Villadsen	 et	 al.	 (2015)	 using	 a	 primary	 peak	 threshold	 retracker.	Most	 of	 the	 study	 area	 is	
covered	in	the	dense	SARIn	mode	of	CryoSat-2.	The	data	is	available	since	July	2010.	For	this	report,	data	
until	the	end	of	2013	have	been	used.	
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4.3 Preprocessing	of	the	data	

The	 CryoSat-2	 dataset	 currently	 does	 not	 deliver	 reliable	 information	 on	 whether	 individual	 waveforms	
were	 acquired	 over	water	 (river)	 or	 over	 land	 surfaces.	 Sometimes,	 the	 backscatter	 values	 (sigma0)	 can	
give	 an	 indication	 of	 the	 type	 of	 surface	 an	 individual	 echo	 was	 acquired	 over.	 Over	 the	 Brahmaputra	
however,	 the	 backscatter	 values	 could	 not	 be	 used,	 which	 might	 be	 due	 to	 the	 fact	 that	 the	 river	 is	
relatively	narrow	and	its	waters	often	turbulent	or	turbid	and	consequently	cannot	be	distinguished	from	
land	surfaces.	Hence,	the	distinction	between	CryoSat-2	data	points	representing	river	water	surface	and	
land	surface	has	to	be	based	on	independent	data	–	in	this	case	a	water	mask	from	multispectral	satellite	
imagery.	Moreover,	the	Brahmaputra	in	the	Assam	valley	is	a	very	dynamic	braided	river	and	experiences	
significant	 changes	 to	 its	 course	 from	 one	 year	 to	 another	 (see	 Figure	 2),	 which	 requires	 dynamic	 river	
masks.	

	

Figure	 2:	 Landsat	 7	 image	 of	 the	 same	 part	 of	 the	 Brahmaputra	 river	 in	 the	 Assam	 valley	 showing	 the	
dynamic	changes	in	river	morphology.	Left:	2010.	Right:	2011.	

4.3.1 Landsat	river	mask	

For	mapping	the	dynamic	braided	river	system,	high	resolution	multi-temporal	data	with	at	least	a	seasonal	
time	step	is	needed.	Because	no	SAR	data	covering	the	entire	period	of	 interest	 is	freely	available,	 it	was	
decided	to	use	optical	imagery	from	the	Landsat	program.	

Landsat	7	and	8	NDVI	 imagery	 is	 available	every	8	days,	however	due	 to	 issues	 such	as	 cloud	 cover	and	
sensor	 failures	 only	 32-day	 composites	 give	 a	 reasonable	 result	 (Google,	 2015).	 All	 areas	 with	 an	 NDVI	
below	 0	were	 considered	water,	 everything	 else	was	 considered	 land.	 Because	 of	 the	 above	mentioned	
morphological	dynamics,	an	individual	mask	had	to	be	created	for	each	year	from	2010	to	2013.	However,	
even	using	the	32-day	composites	no	sufficient	coverage	could	be	achieved	during	the	high-flow	season	in	
summer	 due	 to	 cloud	 cover.	 Thus,	minimum	water	 extent	masks	were	 created	 by	merging	 all	 available	
images	from	one	year.	For	a	pixel	to	be	classified	as	water	in	the	minimum	water	extent	mask,	it	had	to	be	
classified	as	water	in	each	individual	32-day	composite	image	of	the	year.	
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4.3.2 Filtering	and	projecting	the	CryoSat-2	data	

Figure	3	shows	the	filtering	and	projection	process	applied	to	the	CryoSat-2	level	2	data	points.	Only	data	
points	above	the	Landsat	minimum	river	mask	for	the	respective	year	are	used,	i.e.	considered	to	represent	
the	 river	 water	 surface.	 After	 filtering,	 the	 points	 have	 to	 be	 projected	 on	 the	 river	 line	 of	 the	 1D	
hydrodynamic	model	to	determine	the	correspondence	between	CryoSat	2	observation	location	and	model	
state	space	(Figure	3).	Points	were	subsequently	divided	into	separate	groups	based	on	their	distance	from	
each	 other	 using	 an	 automatic	 k-means	 clustering	 algorithm	 and	 heights	 averaged	 for	 each	 group	
separately	(Figure	4).	For	technical	details	on	this	procedure,	please	refer	to	LOTUS	D	6.4.		

	

Figure	3:	Section	of	 the	Brahmaputra	 in	 the	Assam	valley	 showing	 the	Landsat	 river	mask,	 the	CryoSat-2	
observations	and	their	mapping	to	the	1D	river	model,	all	for	2013.	
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Figure	 4:	 Spatial	 detail	 of	 one	 overflight	 showing	 the	 effect	 of	 the	 k-means	 clustering	 algorithm.	 All	
individual	echoes	are	from	the	same	overflight.	All	echoes	shown	in	the	same	color	are	averaged	into	one	
single	height	estimate.	

A	summary	of	the	available	CryoSat	altimetry	data	is	shown	in	Table	1.	Statistics	for	the	headwater	region	
and	 the	 Assam	 valley	 region	 are	 reported	 separately	 for	 each	 year	 of	 the	 record.	 We	 report	 both	 the	
number	of	 individual	 returns	over	 the	water	mask	and	 the	number	of	 individual	overflights	of	 the	water	
mask.	

Table	1:	Overview	of	available	CryoSat-2	data	over	the	Brahmaputra	

	 Assam	Valley	 Headwaters	 Entire	Brahmaputra	

	 Number	of	
returns	over	
water	

Number	of	
overflights	

Number	of	
returns	over	
water	

Number	of	
overflights	

Number	of	
returns	over	
water	

Number	of	
overflights	

2010		 270	 42	 198	 60	 468	 102	

2011	 1005	 151	 613	 195	 1618	 346	

2012	 657	 145	 687	 219	 1344	 364	

2013	 887	 148	 625	 203	 1512	 351	

Total	 2819	 486	 2123	 677	 4942	 1163	
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In	order	 to	minimize	possible	 contamination	of	CryoSat	data	points	by	 land	 returns,	we	 investigated	 the	
effect	 of	 introducing	 a	 buffer	 zone	 around	 the	 edge	 of	 the	water	mask:	Only	 points	which	 are	 placed	 a	
minimum	distance	 away	 from	 the	 edge	 of	 the	water	mask	were	 considered	 true	water	 echoes.	 Table	 2	
shows	 that,	while	 the	 number	 of	 returns	 decreases	 strongly	with	 the	 introduction	 of	 a	 buffer	 zone,	 the	
number	 of	 overflights	 remains	more	 or	 less	 unchanged,	 at	 least	 for	 the	 Assam	 valley.	 Because	 all	 data	
points	 from	 the	 same	 overflight	 are	 acquired	 roughly	 at	 the	 same	 point	 in	 space	 and	 time,	 the	 data	
coverage	does	not	decrease	significantly	with	the	introduction	of	a	buffer	zone.	

Table	2:	Number	of	CryoSat	data	points	for	different	widths	of	the	buffer	zone	

	 Assam	Valley	 Headwaters	 Entire	Brahmaputra	

	 Number	 of	
returns	 over	
water	

Number	 of	
overflights	

Number	 of	
returns	 over	
water	

Number	 of	
overflights	

Number	 of	
returns	 over	
water	

Number	 of	
overflights	

No	
buffer	

2819	 486	 2123	 677	 4942	 1163	

30	 m	
buffer	

2444	 467	 1199	 511	 3643	 978	

60	 m	
buffer	

1989	 458	 595	 295	 	2584	 753	

Figure	5	shows	the	CryoSat-2	data	after	 filtering	over	 the	Brahmaputra	 river	mask	and	projecting	 it	onto	
the	 model’s	 river	 line.	 The	 CryoSat-2	 data	 shows	 many	 outliers,	 mainly	 in	 the	 upstream	 (Tibetan)	 part	
before	river	km	2000.	 In	this	area,	the	river	 is	narrow	and	the	terrain	surrounding	the	river	 is	very	steep,	
explaining	 some	 of	 the	 outliers.	 In	 this	 portion,	 the	 results	 are	 very	 sensitive	 to	 the	 roll	 bias	 correction	
applied	to	the	CryoSat-2	data.	Still,	meaningful	data	can	be	gathered	in	many	places,	as	can	be	seen	when	
compared	 to	 SRTM	elevations	 along	 the	 same	 river	 line.	 If	 outliers	 in	 the	 CryoSat-2	 data	 are	 defined	 as	
showing	an	elevation	difference	of	more	than	20	meters	from	the	SRTM	data,	about	20%	of	the	data	are	
classified	as	outliers.	
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Figure	5:	CryoSat-2	data	2010	to	2013	after	filtering	and	mapping	to	the	model's	river	 line	 in	comparison	
with	SRTM	data	

5 Hydrologic-hydrodynamic	modeling	for	the	Brahmaputra	

5.1 Rainfall-runoff	model		

Initially,	a	hydrologic-hydrodynamic	model	for	the	entire	Ganges	and	Brahmaputra	basin	was	set	up	in	the	
DHI	MIKE	11	software	(Figure	6).	The	model	consists	of	a	hydrologic	and	a	hydrodynamic	part.	The	rainfall-
runoff	response	is	simulated	using	the	NAM	(Nedbør-Afstrømnings	Model,	Danish	for	rainfall-runoff	model,	
Nielsen	and	Hansen,	1973).	The	runoff	is	generated	in	87	lumped	NAM	rainfall-runoff	subcatchments	–	33	
in	the	Brahmaputra	basin	and	54	 in	the	Ganges	basin.	The	runoff	from	individual	catchments	 is	added	to	
the	river	network	and	discharge	is	routed	through	the	river	network	in	MIKE	11	using	a	1D	dynamic	wave	
routing	based	on	the	Saint	Venant	equations	for	unsteady	flow.	For	details	on	the	hydrologic-hydrodynamic	
modeling	approach,	please	refer	to	LOTUS	D6.4.	

For	some	of	the	NAM	subcatchments,	mainly	in	the	Nepalese	regions	of	the	Ganges	basin,	in-situ	discharge	
observations	were	available.	Furthermore,	discharge	observations	 from	the	stations	Bahadurabad	on	 the	
Brahmaputra,	and	Hardinge	Bridge	on	the	Ganges	(see	Figure	6),	both	close	to	the	two	rivers’	confluence,	
were	available.	Besides	these	few	in-situ	observations	the	entire	model	was	based	on	remote	sensing	data:	
For	the	precipitation	forcing,	TRMM	v7	3B42	data	was	used	(Tropical	Rainfall	Measurement	Mission	Project	
(TRMM),	2011).	Temperature	and	reference	evapotranspiration	was	based	on	data	from	the	APHRODITE’s	
Water	Resources	project	 (APHRODITE’s	Water	Resources,	2014).	The	SRTM	DEM	(Jarvis	et	al.,	2008)	was	
used	to	delineate	the	subcatchments	and	the	drainage	network.	The	calibration	period	included	the	years	
2002	to	2007.	

The	 rainfall-runoff	 models	 in	 the	 NAM	 subcatchments	 with	 available	 discharge	 observations	 were	
calibrated	 individually,	 and	 the	 resulting	 parameters	 transferred	 to	 the	 remaining	 catchments.	 As	 it	was	
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impossible	to	generate	enough	runoff	from	the	model	especially	in	the	Himalaya	it	was	assumed	that	there	
is	 a	 bias	 in	 the	 TRMM	 precipitation	 data:	 For	 all	 Himalaya	 subcatchments	 the	 precipitation	 forcing	was	
scaled	 with	 a	 factor	 of	 1.1.	 Such	 a	 bias	 in	 the	 TRMM	 precipiation	 product	 has	 been	 found	 before,	 for	
example	by	Michailovsky	et	al.	(2013).	

	

Figure	 6:	 The	 Ganges-Brahmaputra	 basin	 model.	 Main	 basins	 as	 well	 as	 subcatchments	 are	 shown.	
Calibration	subcatchments	(Table	3)	are	hatched.	

Table	3	provides	an	overview	of	 rainfall-runoff	model	performance	 in	 the	calibration	catchments.	With	a	
few	 exceptions,	 performance	 statistics	 such	 as	 Nash-Sutcliffe	 model	 efficiency	 (NSE),	 root	mean	 square	
error	(RMSE)	and	mean	error	(bias,	ME)	are	acceptable.	Table	4	shows	selected	hydrologic	indicators	for	all	
simulated	subcatchments	in	the	Brahmaputra.	Runoff	coefficients	in	all	catchments	are	generally	high	and	
exceed	1	for	the	high-elevation	catchments	in	the	Brahmaputra,	indicating	long-term	snow	and	ice	loss	in	
those	catchments.	

Table	3:	Performance	indicators	for	the	calibration	catchments	

Calibration	
catchment	

NSE	(-)	 RMSE	(m3/s)	 ME	(m3/s)	 Mean	of	
observations	
(m3/s)	

Number	of	
simulated	
observations	

Arun	 -0.7083	 571	 241	 529	 2189	

Bagmati	 0.1246	 314	 118	 110	 2190	

Bheri	 0.8182	 144	 34	 307	 2190	

Gandhak	1	 0.7880	 557	 67	 955	 2190	
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Kaligandaki	 0.6898	 263	 10	 403	 2128	

Karnali	 0.6961	 274	 -101	 513	 2190	

Lohit	 0.0974	 1007	 234	 919	 2190	

Rapti	1	 0.5277	 155	 -15	 115	 1461	

Sankosh	1	 0.6577	 186	 32	 348	 2190	

Sunkoshi	 -0.6730	 1102	 -688	 745	 2190	

Tamor	 0.7465	 252	 -25	 416	 2190	

Table	4:	Selected	hydrologic	indicators	for	the	simulated	rainfall-runoff	response	in	the	NAM	catchments	

Catchment	 Mean	
precipi-
tation	
(mmyr-1)	

Mean	
runoff		

(mmyr-1)	

Median	
runoff		

(mmyr-1)	

Runoff	90-
percentile	
(mmyr-1)	

Runoff-
coeffi-
cient	(-)	

Average	
snow	
storage	
(mm)	

Average	
elevation	
(mamsl)	

BMAPUTRA1	 339	 132	 39	 292	 0.389	 46.3	 5109	
BMAPUTRA2	 270	 219	 57	 455	 0.811	 37.7	 5107	
BMAPUTRA3	 141	 230	 53	 570	 1.631	 26.3	 5029	
BMAPUTRA4	 235	 232	 116	 1056	 0.987	 26.5	 4839	
BMAPUTRA5	 195	 252	 122	 1059	 1.292	 17.5	 4837	
BMAPUTRA6	 281	 419	 123	 757	 1.491	 15.0	 4574	
BMAPUTRA7A	 553	 664	 651	 3054	 1.201	 25.6	 4396	
BMAPUTRA7B	 7145	 5430	 2142	 5249	 0.760	 0.5	 1802	
BMAPUTRA8	 4106	 2015	 581	 1611	 0.491	 0.0	 891	
BMAPUTRA9	 3541	 1759	 773	 2843	 0.497	 0.0	 430	
BMAPUTRA10	 2247	 1146	 588	 2357	 0.510	 0.0	 995	
BMAPUTRA11	 2732	 1500	 758	 3212	 0.549	 0.0	 487	
BMAPUTRA12	 3611	 2222	 559	 2401	 0.615	 0.0	 422	
BMAPUTRA14	 4288	 2295	 496	 2250	 0.535	 0.0	 273	
BMAPUTRA15	 4277	 2134	 60	 230	 0.499	 0.0	 116	
SANKOSH1	 1874	 1491	 218	 933	 0.796	 13.7	 3176	
SANKOSH2	 5577	 2908	 63	 297	 0.521	 0.0	 76	
RAIDAK	 2105	 1638	 128	 584	 0.778	 3.9	 3242	
DUDKUMAR1	 1173	 792	 59	 382	 0.675	 14.2	 3827	
DUDKUMAR2	 3897	 2336	 117	 685	 0.599	 0.0	 585	
DUDKUMAR3	 5236	 2901	 123	 590	 0.554	 0.0	 176	
DUDKUMAR4	 4957	 2670	 54	 222	 0.539	 0.0	 34	
TEESTA1	 2636	 2351	 345	 1517	 0.892	 8.5	 2943	
TEESTA2	 3674	 2205	 59	 355	 0.600	 0.0	 340	
TEESTA3	 4141	 2005	 74	 288	 0.492	 0.0	 39	
TEESTA4	 3559	 1730	 140	 616	 0.486	 0.0	 48	
MANAS1	 1258	 832	 408	 1802	 0.661	 7.7	 3657	
MANAS2	 4074	 2101	 40	 169	 0.516	 0.0	 180	
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DIBANG	 3574	 2865	 838	 1987	 0.802	 0.1	 3019	
LOHIT	 2319	 1886	 970	 2117	 0.813	 1.0	 3765	
SUBANSIRI1	 2391	 1873	 1057	 3645	 0.783	 0.3	 3113	
SUBANSIRI2	 4219	 1689	 297	 1137	 0.400	 0.0	 664	
DHARALA	 5056	 2522	 93	 397	 0.499	 0.1	 46	

5.2 One-dimensional	hydrodynamic	model		

The	 river	 flow	 in	 MIKE	 11	 is	 modelled	 using	 a	 1D	 dynamic	 wave	 routing	 based	 on	 the	 Saint	 Venant	
equations	 for	unsteady	 flow	MIKE	by	DHI,	2009.	For	details	on	 the	1d	hydrodynamic	modeling	approach	
please	refer	to	LOTUS	D6.4.	

In	the	following,	we	will	focus	on	the	Brahmaputra	portion	of	the	model	only.	This	part	of	the	model	was	
calibrated	to	the	discharge	at	Bahadurabad	by	adjusting	the	Manning	number.	A	spatially	uniform	Manning	
number	was	 calibrated	 in	 the	 hydrodynamic	model.	 The	main	 calibration	 objective	was	 to	 calibrate	 the	
model’s	discharge	at	the	station	Bahadurabad	in	Bangladesh,	close	to	the	confluence	of	the	Brahmaputra	
River	with	the	Ganges.	The	results	for	the	calibration	period	2002	to	2007	can	be	seen	in	Figure	7.	A	good	
fit	with	a	NSE	of	0.91,	a	RMSE	of	4955	m3/s	and	a	mean	bias	of	-7.5%	could	be	obtained.	

The	validation/data	assimilation	period	includes	the	years	2010	to	2013,	as	it	starts	with	the	availability	of	
CryoSat-2	data.	During	that	period,	in-situ	discharge	data	could	only	be	obtained	for	the	high-flow	season	
(April	to	October).	The	model	validation	result	for	this	period	can	be	seen	in	Figure	8.	

	

	

Figure	7:	Observed	vs.	simulated	discharge	for	the	Brahmaputra	at	Bahadurabad	station	for	the	calibration	
period	2002	-	2007	
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Figure	 8:	 Observed	 vs.	 simulated	 discharge	 for	 the	 Brahmaputra	 at	 Bahadurabad	 station	 for	 the	 data	
assimilation	period	2010	–	2013.	Note	that	observed	data	only	exists	for	the	high-flow	periods.	

A	summary	of	the	results	for	both	periods	is	presented	in	Table	5,	showing	minor	decreases	in	the	fit	of	the	
model’s	simulated	discharge	for	the	data	assimilation	period.	

Table	 5:	 Number	 of	 observations	 and	 performance	 indicators	 for	 the	 station	 Bahadurabad	 for	 the	 full	
calibration	period	2002	-	2007,	the	high-flow	seasons	of	2002	-	2007	and	the	high	flow	seasons	of	2010	-	
2013	

	 Number	of	
observations	

RMSE	[m3/s]	 Relative	Bias	(Qsim	
-	Qobs)/	Qobs	[-]	

NSE	[-]	

2002	–	2007	 5914	 4955	 -0.075	 0.91	

2002	–	2007		
Apr	–	Oct	only	

3792	 5471	 -0.109	 0.90	

2010	–	2013		
Apr	–	Oct	only	

5156	 6744	 0.048	 0.81	

The	 results	of	 the	hydrologic-hydrodynamic	model	 for	 the	 calibration	period	2002	 to	2007	with	a	Nash–
Sutcliffe	coefficient	of	0.91	are	good,	given	the	size	of	the	model	and	the	availability	of	forcing	data,	using	
freely	available	remote	sensing	only.	For	the	data	assimilation	period	2010	to	2013	discharge	observations	
at	 Bahadurabad	 are	 only	 available	 for	 the	 high-flow	 season.	 Comparing	 the	model’s	 performance	 in	 the	
two	periods	therefore	has	to	be	done	based	on	data	from	April	to	October.	The	performance	of	the	model	
in	 the	calibration	period	stays	almost	 the	same	–	 the	NSE	 is	only	 reduced	 to	0.90.	 In	 the	validation/data	
assimilation	period	the	NSE	is	decreased	to	0.81,	which	 is	still	a	very	good	performance.	To	some	extent,	
the	 reduced	 performance	 in	 the	 validation	 period	 could	 be	 due	 issues	 in	 the	 precipitation	 forcing	 or	
changes	in	the	climatic	conditions	between	those	two	periods.	
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5.3 Calibration	of	cross	section	parameters	

No	in-situ	cross	section	data	was	available	for	model	construction.	The	SRTM	DEM	was	used	to	derive	the	
rivers’	 course	 and	 a	 first	 guess	 of	 the	 cross	 section	 datums,	 using	 automatic	 DEM	 hydro-processing	
routines.	However	this	can	only	be	seen	as	a	first	guess,	as	the	SRTM	DEM	has	a	horizontal	resolution	of	90	
meters,	and	the	vertical	standard	error	is	in	the	range	of	a	few	meters	(Rodríguez	et	al.,	2006).	Furthermore	
the	 SRTM	data	 cannot	 represent	 river	 bathymetry.	 A	 different	 approach	was	 chosen	 to	 ensure	 that	 the	
model	 accurately	 reproduces	water	 levels	 along	 the	 river.	 Cross	 sections	with	 a	 simple	 triangular	 shape	
were	 placed	 ca.	 every	 50	 km	 along	 the	 entire	 Brahmaputra	 River	 (more	 densely	 spaced	 in	 regions	with	
abrupt	changes	in	bed	slope)	and	then	calibrated	using	the	elevations	extracted	from	the	SRTM	DEM	and	
some	rough	estimates	about	bathymetry	as	a	starting	point	for	the	calibration.	

The	 cross	 section	 calibration	 was	 performed	 after	 the	 discharge	 calibration	 presented	 in	 the	 previous	
section.	The	calibration	was	based	on	a	combination	of	data	 from	the	Envisat	mission	and	 the	CryoSat-2	
data:	 The	 Envisat	 mission	 with	 its	 35-day	 repeat	 orbit	 provides	 virtual	 station	 time	 series.	 These	 show	
water	level	time	series	with	a	35-day	timestep	at	distinct	points	in	the	Brahmaputra	River.	13	Envisat	virtual	
stations	along	the	Brahmaputra	in	the	Assam	valley	(see	Figure	10)	covering	the	years	2002	to	2010	were	
used.	The	data	originates	from	the	ESA	River&Lake	project	(Berry,	2009).	CryoSat-2	observations	cannot	be	
used	directly	to	extract	water	level	time	series.	However,	due	to	the	drifting	orbit,	when	several	years	are	
taken	 into	 account,	 they	 show	 the	 average	 longitudinal	 water	 level	 profile	 along	 the	 entire	 river.	 Both	
datasets	combined	provide	the	necessary	information	to	fully	calibrate	the	model’s	water	levels.	

Figure	9	shows	the	results	of	 step	1	of	 the	water	 level	calibration.	For	better	visibility,	 the	results	are	all	
shown	as	elevations	relative	to	the	reference	model’s	cross	section	datums	instead	of	absolute	elevations.	
The	reference	model	was	run	with	cross	section	datums	derived	from	the	SRTM	DEM.	It	can	be	seen	that	
the	average	 simulated	water	 levels	 from	 the	 reference	model	do	not	accurately	 represent	 the	CryoSat-2	
observations.	After	calibrating	the	cross	section	datums	–	which	resulted	in	datum	adjustments	of	up	to	4	
meters	 –	 the	 simulated	 average	 water	 level	 follows	 the	 CryoSat-2	 observations	 more	 closely.	 The	
calibration	 reduced	 the	RMSE	between	average	 simulated	water	 levels	 and	CryoSat-2	observations	 from	
3.04	metres	for	the	reference	model	to	2.38	meters.	The	remaining	deviation	can	mainly	be	explained	by	
seasonal	water	level	variations.	
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Figure	9:	Result	of	water	level	calibration	step	1	for	the	Assam	valley	for	the	period	2010	to	2013.	All	levels	
are	shown	as	elevations	relative	to	the	reference	model's	cross	section	datums	based	on	the	SRTM	DEM.	

The	results	of	the	second	step	of	the	cross	section	calibration	-	adjusting	the	cross	section	angles	to	fit	the	
simulated	water	level	amplitudes	to	the	Envisat	observations	-	can	be	seen	in	Figure	11	for	one	of	the	13	
virtual	 stations.	 During	 the	 calibration,	 no	 absolute	 water	 levels	 were	 used,	 but	 time	 differences.	
Consequently,	Figure	11	shows	water	levels	relative	to	the	time	series	value	at	the	time	of	the	first	Envisat	
observation.	

The	change	of	the	cross	section	shapes	to	calibrate	for	water	level	amplitudes	showed	to	have	a	relevant	
effect	on	the	absolute	water	levels.	Subsequently,	step	1	of	the	cross	section	calibration	had	to	be	repeated	
with	the	results	from	step	2.	
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Figure	10:	Envisat	VS	used	in	step	2	of	the	cross	section	calibration.	Numbering	of	VS	is	the	same	as	in	Table	
6.	

	

	

Figure	11:	Water	levels	after	step	2	of	the	cross	section	calibration	for	one	virtual	station	(No.	8	in	Figure	10	
and	Table	6).	All	levels	relative	to	the	water	levels	at	the	time	of	the	first	Envisat	observation.	
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The	changes	to	the	cross	section	were	found	to	have	a	negligible	effect	on	the	discharge	routing;	hence	no	
discharge	recalibration	of	the	model	was	performed	after	the	water	level	calibration	finished.	

The	 presented	 cross	 section	 calibration	 offers	 a	way	 to	 calibrate	water	 levels	 in	 the	 entire	model	 space	
without	 precise	 knowledge	 of	 topography	 and	 bathymetry.	 Synthetic	 cross	 sections	 allow	 the	 use	 of	
practically	 any	 shape,	 however	 for	 the	 sake	 of	 reducing	 the	 number	 of	 decision	 variables	 a	 simple	
triangular	 shape	 has	 been	 chosen.	 The	 fitting	 process	 is	 computationally	 expensive;	 step	 2	 takes	
approximately	1	week	on	a	20	core	calculation	server.	

Table	6	gives	an	overview	of	the	results	of	the	cross	section	calibration.	

	Table	6:	Overview	of	the	results	of	the	cross	section	calibration	

	 RMSE	(m)	pre	
calibration	

ME	(m)	pre	
calibration	

RMSE	(m)	post	
calibration	

ME	(m)	post	
calibration	

Mean	 water	 level	
profile	

3.044	 -0.136	 2.304	 0.115	

Virtual	station	1	 2.071	 0.047	 0.901	 0.023	

Virtual	station	2	 1.573	 -0.006	 0.763	 -0.016	

Virtual	station	3	 1.696	 -0.010	 0.772	 -0.020	

Virtual	station	4	 1.770	 -0.013	 1.046	 -0.016	

Virtual	station	5	 2.577	 -0.015	 2.070	 -0.012	

Virtual	station	6	 1.769	 -0.025	 1.158	 -0.012	

Virtual	station	7	 2.433	 0.022	 2.051	 0.040	

Virtual	station	8	 1.650	 -0.056	 0.947	 -0.016	

Virtual	station	9	 2.641	 -0.051	 2.381	 -0.017	

Virtual	station	10	 1.482	 -0.033	 1.043	 -0.007	

Virtual	station	11	 1.533	 -0.035	 0.757	 0.009	

Virtual	station	12	 1.189	 -0.039	 0.538	 -0.002	

Virtual	station	13	 1.070	 -0.029	 0.533	 -0.000	
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6 Operational	modeling	and	data	assimilation	for	the	Brahmaputra	

After	the	water	 level	calibration	described	 in	the	previous	section,	CryoSat-2	data	from	the	Assam	Valley	
were	 assimilated	 to	 the	 hydrodynamic	 model.	 The	 assimilation	 framework	 and	 software	 architecture	 is	
described	 in	LOTUS	D6.4.	Here,	we	show	the	results	of	a	number	of	data	assimilation	experiments,	using	
the	hydrologic-hydrodynamic	model	of	the	Brahmaputra	and	the	Brahmaputra	CryoSat-2	dataset.	

6.1 Open-loop	run	

The	 open-loop	 run	 is	 a	 probabilistic	 model	 run	 without	 data	 assimilation.	 Model	 uncertainty	 is	
parameterized	and	an	ensemble	of	model	 runs	 is	created;	 the	ensemble	provides	an	estimate	of	 the	 full	
probability	density	function	(pdf)	of	all	model	states	and	outputs.	The	performance	of	the	open-loop	run	is	
assessed	in	terms	of	its	sharpness	and	reliability.	Sharpness	is	a	measure	of	the	width	of	model	output	pdfs.	
Reliability	requires	that	actual	observations	are	bracketed	by	model	uncertainty.	Sharpness	and	reliability	
of	 a	 probabilistic	 model	 are	 sometimes	 combined	 into	 one	 single	 indicator,	 the	 continuous	 ranked	
probability	 score	 (CRPS).	 The	 higher	 the	 sharpness	 and	 reliability	 of	 a	 probabilistic	model,	 the	 lower	 its	
CRPS.	 Suitable	benchmarks	 for	 the	performance	of	probabilistic	models	 are	 climatology	and	persistence.	
Climatology	 predicts	 the	 river	 discharge	 for	 every	 day	 of	 the	 year	 as	 the	 average	 of	 the	 historical	
observations	for	that	same	day	of	the	year.	Persistence	predicts	the	river	discharge	as	the	latest	available	
observation	 prior	 to	 the	 day	 of	 interest.	 A	 5-day	 persistence	 prediction,	 for	 instance,	 uses	 today’s	 river	
discharge	as	a	prediction	 for	 the	discharge	 in	5	days	 from	now.	For	details	and	definitions	of	 the	various	
indicators	and	benchmarks	please	see	e.g.	Bauer-Gottwein	et	al.,	2015.	

In	the	open-loop	run	and	all	DA	experiments,	it	was	assumend	that	the	main	source	of	model	error	is	the	
runoff	generated	in	the	NAM	subcatchments.	This	is	mainly	because	of	the	large	uncertainty	of	the	remote	
sensing	precipitation	product.	Hence,	the	ensemble	was	generated	by	perturbing	the	catchments’	runoffs.	
Due	 to	 the	 size	 of	 the	 model	 and	 the	 number	 of	 subcatchments,	 the	 perturbations	 of	 the	 individual	
catchments	 have	 to	 be	 correlated	 in	 space	 and	 time.	 Otherwise	 the	 perturbations	 of	 the	 individual	
catchments	cancel	each	other	out	when	aggregated	in	the	full	model.	

Relative	runoff	error	in	subcatchment	i	and	time	step	t	(wt
i)	was	parameterized	as	

1
i i
t

i
ttww δ −= + ε 		

where	 	 i
tw 		 Relative	runoff	error	in	catchment	i	at	time	step	t	

	 	 δ 		 AR1	parameter	

	 	 i
tε 		 white	Gaussian	noise	

The	standard	deviation	of	the	random	noise	contribution	ε	was	assumed	constant	in	time	and	equal	to	0.3.	
The	spatial	correlation	between	noise	terms	 in	different	catchments	was	assumed	to	be	the	same	as	the	
spatial	correlation	of	catchment	runoff.		The	AR1	parameter	was	set	to	a	value	of	0.94	for	daily	time	steps	
in	the	open	loop	run.	Ensemble	size	in	the	open	loop	run	was	20.	Figure	12	and	Figure	13	show	simulated	
discharge	at	Bahadurabad	for	the	individual	ensemble	members	and	the	ensemble	mean.	Table	8	provides	
quantitative	performance	statistics	for	the	open	loop	run.	The	table	also	provides	statistics	for	climatology	
and	persistence	benchmarks.	In	terms	of	CRPS,	the	open	loop	run	outperforms	climatology	and	persistence	
forecasts	beyond	a	forecasting	horizon	of	5	days.	



21	
	

	

	

Figure	 12:	 Simulated	 discharge	 for	 the	 station	 Bahadurabad	 in	 the	 open-loop	 run:	 Individual	 ensemble	
members	in	gray	and	central	prediction	in	black.	

	

Figure	13:	Open-loop	run:	Zoom-in	for	the	year	2012	

6.2 Data	assimilation	experiments	

Three	 data	 assimilation	 experiments	 were	 performed,	 which	 differ	 in	 terms	 of	 model	 error	
parameterization,	 assumed	 observation	 error,	 ensemble	 size,	 type	 of	 data	 assimilated	 and	 localization.	
Table	 7	 provides	 an	 overview	 of	 the	 specifications	 for	 all	 DA	 experiments.	 All	 DA	 experiments	 used	 the	
ensemble	 transform	 Kalman	 filter	 (ETKF)	 algorithm	 and	 in	 all	 experiments	 the	 spatial	 correlation	 of	 the	
Gaussian	runoff	noise	term	was	assumed	to	be	equal	to	the	spatial	correlation	of	runoff.	DA	experiment	1	
uses	synthetic	observations,	created	at	the	exact	same	locations	and	times	as	in	the	real	CryoSat	dataset.	
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DA	experiments	2	and	3	use	the	real	Brahmaputra	CryoSat	dataset.	Figure	14	to	Figure	19	provide	graphical	
summaries	 of	 the	 results	 for	 the	 three	 DA	 experiments,	 while	 quantitative	 performance	 indicators	 are	
listed	in	Table	8.	

Table	7:	Specifications	for	the	three	DA	experiments	

	 Ensemble	
size	

Filter	 Data	
assimilated	

ε	 δ	 Observation	
error	(m)	

localization	

DA	
experiment	1	

50	 ETKF	 Synthetic	
data	

0.25	 0.99	 0.5	 50	km	up-	and	
downstream	

DA	
experiment	2	

20	 ETKF	 Real	data	 0.25	 0.94	 1	 no	

DA	
experiment	3	

20	 ETKF	 Real	data	 0.25	 0.94	 0.75	 100	km	up-	
and	
downstream	

The	 outputs	 show	 that	 assimilation	 of	 CryoSat	 data	 only	 results	 in	 marginal	 improvements	 in	 model	
performance.	One	of	the	most	important	reasons	may	be	the	assumption	of	uniform	observation	error	for	
all	CryoSat	water	height	data.	The	observation	error	is	expected	to	be	non-uniform	in	space	and	time	due	
to	various	corrections	applied	in	the	processing	of	water	heights	(atmospheric	correction,	geoid,	roll	bias).	
It	 is	 clear	 that	many	possible	modifications	and	enhancements	of	 the	DA	 set-up	 remain	 to	be	 tested,	 as	
discussed	in	the	next	section.	

	



Table	8:	Performance	overview	of	benchmarks	and	various	data	assimilation	runs	

Run	 NSE	(-)	 RMSE	
(m3/s)	

ME	(m3/s)	 Coverage	of	
the	nominal	
95%	CI	

Sharpness	

(m3/s)	

CRPS	

(m3/s)	

Mean	of	
observations	
(m3/s)	

Number	of	
simulated	
observations	

Climatology	 0.6817	 8945	 -3705	 0.9485	 22711	 4601	 24228	 1067	

Persistence	(1-day)	 0.9879	 1741	 69	 	 	 1046	 24228	 1067	

Persistence	(2-days)	 0.9573	 3265	 133	 	 	 1988	 24228	 1067	

Persistence	(3-days)	 0.9164	 4560	 196	 	 	 2813	 24228	 1067	

Persistence	(4-days)	 0.8715	 5641	 258	 	 	 3536	 24228	 1067	

Persistence	(5-days)	 0.8266	 6534	 320	 	 	 4149	 24228	 1067	

Persistence	(6-days)	 0.7841	 7271	 382	 	 	 4682	 24228	 1067	

Persistence	(7-days)	 0.7448	 7884	 445	 	 	 5161	 24228	 1067	

Persistence	(8-days)	 0.7079	 8416	 516	 	 	 5621	 24228	 1067	

Persistence	(9-days)	 0.6721	 8901	 590	 	 	 6055	 24228	 1067	

Persistence	(10-days)	 0.6354	 9369	 667	 	 	 6445	 24228	 1067	

Open	loop	 0.7845	 7131	 3005	 0.9292	 19167	 3995	 24228	 1067	

DA	experiment	1	 0.7853	 7118	 3172	 0.8439	 22312	 3895	 24228	 1067	

DA	experiment	2	 0.7576	 7563	 3844	 0.8662	 24580	 4280	 24228	 1067	

DA	experiment	3	 0.7576	 7563	 3684	 0.8257	 23930	 4230	 24228	 1067	



	

	

Figure	14:	DA	experiment	1,	discharge	at	Bahadurabad:	Ensemble	members	in	gray,	open-loop	run	in	
black,	 assimilated	 run	 in	 red	 and	 in-situ	 data	 in	 blue.	 Green	 dots	 indicate	 timing	 of	 CryoSat	
observations.	

	

Figure	15:	DA	experiment	1:	Zoom-in	for	the	year	2012	
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Figure	16:	DA	experiment	2,	discharge	at	Bahadurabad:	Ensemble	members	in	gray,	open-loop	run	in	
black,	 assimilated	 run	 in	 red	 and	 in-situ	 data	 in	 blue.	 Green	 dots	 indicate	 timing	 of	 CryoSat	
observations.	

	

Figure	17:	DA	experiment	2:	Zoom-in	for	the	year	2012	
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Figure	18:	DA	experiment	3,	discharge	at	Bahadurabad:	Ensemble	members	in	gray,	open-loop	run	in	
black,	 assimilated	 run	 in	 red	 and	 in-situ	 data	 in	 blue.	 Green	 dots	 indicate	 timing	 of	 CryoSat	
observations.	

	

Figure	19:	DA	experiment	3:	Zoom-in	for	the	year	2012	

	

7 Outlook	

The	 field	 of	 satellite	 radar	 altimetry	 for	 inland	water	monitoring	 is	 bound	 to	 grow	 in	 the	 near	 to	
medium-term	 future.	 Several	 missions	 are	 ongoing	 or	 scheduled	 for	 the	 near	 future	 (Sentinel-3,	
Jason-3,	Jason-CS,	AltiKa,	HY-2,	SWOT).	Assimilation	of	such	data	to	inland	water	models	remains	an	
important	 research	 challenge	 and	 holds	 promise	 for	 the	 continued	 improvement	 of	 operational	
hydrologic	forecasting.	
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The	focus	of	 this	study	was	to	develop	the	technical	knowledge	base	and	algorithms	to	be	able	to	
assimilate	CryoSat	 radar	 altimetry	data	 to	 large-scale	 hydrologic-hydrodynamic	models.	While	 this	
objective	was	 achieved,	 performance	 improvement	 of	 hydrologic	 forecasts	 remained	marginal	 for	
the	data	assimilation	experiments	reported	in	this	study.	There	are	a	number	of	aspects	that	should	
be	further	investigated	with	the	presented	modeling	and	DA	setup,	including:	

• Effect	of	buffer	 zone	around	the	permanent	water	mask.	This	will	make	sure	 that	only	echoes	
placed	centrally	over	open	water	surfaces	will	be	assimilated	to	the	hydrodynamic	model.	Height	
estimates	derived	from	such	echoes	are	expected	to	be	of	higher	accuracy.	

• Instead	of	working	with	a	uniform	observation	uncertainty,	the	observation	uncertainty	can	be	
calculated	 as	 the	 standard	 deviation	 of	 height	 estimates	 pertaining	 to	 the	 same	 cluster	 of	
measurements.	 Measurements	 with	 a	 lower	 uncertainty	 will	 then	 get	 a	 larger	 weight	 in	 the	
assimilation	scheme	than	highly	uncertain	measurements.	

• Spatial	subsetting.	While	the	cross	section	calibration	reported	in	this	study	ensured	a	global	fit	
between	simulated	river	heights	and	the	CryoSat	dataset,	there	will	be	bias	between	model	and	
observations	 locally.	 It	 should	 be	 investigated	 if	 erroneous	 or	 overshooting	 updates	 in	 the	
assimilation	scheme	are	consistently	produced	by	measurements	over	distinct	stretches	of	 the	
river.	

• Extending	the	assimilation	period	to	include	2014	and	2015.	

8 Conclusions	

This	study	has	established	the	technical	basis	for	the	assimilation	of	CryoSat	radar	altimetry	data	to	
hydrologic-hydrodynamic	models.	The	approach	was	demonstrated	practically	for	the	Brahmaputra	
basin.	 The	 approach	 is	 scalable	 and	 can	 be	 extended	 to	 other	 basins	 and	 to	 continental/global	
coverage.	The	results	we	have	so	far	do	not	show	clear	performance	 improvements	of	operational	
hydrological	models	 that	 are	 attributable	 to	 the	CryoSat	 river	height	dataset.	 The	CryoSat	dataset	
and	 inland	water	 altimetry	 in	 general	may	 become	 a	 key	 data	 source	 for	 water	managers	 in	 the	
region	due	to	 its	 impartial	nature,	open	accessibility	 to	all	 low	cost.	The	 impact	of	 the	dataset	will	
increase	 with	 enhanced	 spatio-temporal	 resolution	 available	 from	 the	 combination	 of	 multiple	
missions	and	with	a	better	understanding	of	the	error	statistics	of	the	altimetry	data.	
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