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1. Introduction

This Algorithm Theoretical Basis Document (ATBD) describes an algorithm used to
estimate soil surface moisture from Cryosat2 Level-1b altimeter products. This
document identifies the source of input data; outlines the physical principles and
mathematical background; justifies this algorithm and then explores its limitations
and assumptions.

1.1 Acronyms and Abbreviations List
Alist of acronyms and abbreviations is given in Table 1.

Table 1 Acronyms and Abbreviations List

Acronym Definition

AGC Automated Gain Control

BES Berry Expert system

Cryosat2 L1B | Cryosat Level 1B Low Resolution Mode
LRM

Cryosat2 L1B | Cryosat Level 1B Synthetic Aperture Radar
SAR

CSSME Cryosat2 Soil Surface Moisture Estimator
dB Decibels

DMU De Montfort University

DREAM DRy EArth Model

ERS European Remote Sensing Satellite
ESA European Space Agency

GDR Geophysical Data Record

LRM Low Resolution Mode

MGDR Merged Geophysical Data Record
NEWC Newcastle University

0COG Offset Centre of Gravity

PRF Pulse Repetition Frequency

RA Radar Altimeter

RA-2 L1B Envisat Level 1B Product

SAR Synthetic Aperture Radar

SGDR Sensor Geophysical Data Record
SMALT Soil Moisture from Altimetry

SMOS Soil Moisture Ocean Salinity satellite
WAP Altimeter Waveform Product

WF Waveform
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2. Algorithm Overview

The algorithm described here is called the Cryosat2 Soil Surface Moisture Estimator
(CSSME): it is appropriate for estimating soil surface moisture content from
Cryosat2 L1B LRM data, and has been developed using Cryosat2 LRM data. Analysis
of the Cryosat2 L1B SAR-LRM transition zone in South Africa (Section 3.2.1.3)
indicates that Cryosat2 L1B SAR data should also be appropriate for processing by
this algorithm.

2.1 Objective

Soil surface moisture is a key climate variable, with a range of practical applications
from informing local climate models (e.g. Drusch, 2007; Crow et al, 2009) to crop
analysis (Osborne et al, 2009) and rainfall and runoff predictions (e.g. Brocca et al,
2010: Crow et al, 2009). Because this variable changes spatially and temporally very
rapidly, responding to precipitation, surface and sub-surface water flow, the
availability of in-situ measurements is limited (Dorigo et al., 2012). There has
therefore been sustained interest in the possibility of utilising remote sensing
techniques from both passive and active sensors to derive this variable (e.g.
Albergel et al.,, 2009; Doubkova et al,, 2011; Lacava et al,, 2012; Liu et al., 2009; Pathe
et al, 2009). The advent of the SMOS mission now provides a dedicated sensor for
passive soil surface moisture measurement (Kerr et al., 2012).

An alternative approach has been developed over the past few years, using satellite
radar altimetry to measure soil surface moisture in arid and semi-arid terrain, where
existing remote sensing methods encounter difficulty (Berry et al., 2013; Berry, et al,,
2012; Berry & Carter, 2010; 2011; Bramer & Berry, 2010.). This approach has been
progressed into soil surface moisture estimates from the ERS2 and Envisat
altimeters in desert and semi-arid terrain under the ESA SMALT project (Berry et al.,
2012; SMALT, 2014).

2.2 Instrument Characteristics

CryoSat2 is an altimetry mission launched 8 April 2010 into a near-polar orbit, with
the primary objective of studying the Earth’s cryosphere. Its mean altitude is 717 km
and the orbital inclination gives a latitude limit of 88°, so that almost all the earth’s
land surfaces are overflown by the satellite. This orbit is not sun-synchronous, and
has a repeat period of approximately 369 days, 5344 orbits. This orbit configuration
results in a network of closely spaced tracks built up over the earth’s surface, but
precludes repeat-arc analysis over land surfaces for seasonal change detection. The
original mission duration is in negotiation for further extension. Whilst the primary
mission is to study the cryosphere, the satellite also retrieves data from most of the
earth’s surfaces including land.
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The primary instrument is the SIRAL altimeter. The instrument has three operating
modes. The first, LRM mode, produces data similar to that from previous altimeter
missions, and was designed for use over ocean and ice sheet interiors. Here, radar
pulses evenly spread at a frequency of 1.97KHz are averaged to produce waveforms
at 20Hz. This mode was originally also utilised over most non-cryospheric land
surfaces (with the exception of glaciers). The mode of operation is governed by a
dynamic mode mask (designed to allow changes in observation mode in response to
the dynamically varying sea-ice extent) and this has allowed other changes to the
operating mode mask to be made during the mission, resulting in more data over
land being acquired in one of the other two modes of operation.

The second mode, SAR mode, combines bursts of coherently transmitted echoes
using Synthetic Aperture Radar processing, to reduce the surface footprint in the
along-track direction. The primary objective was to enable more precise mapping of
ice floes. This mode is now utilized over a significant extent of the earth’s land
surfaces. The burst mode PRF is 85.7Hz.

The final interferometric mode (SIN mode) is used at the ice sheet margins and over
glaciers. Here, the instrument utilizes a second receive only antenna, allowing
interferometric processing of the altimeter echoes, to yield more precise slope
information. In this algorithm, SAR and LRM data are considered; this document
refers to LRM and SAR modes only.

The Cryosat2 SRAL altimeter operation is well outlined in prior reports under
LOTUS (e.g. Nielsen et al., 2014) and this is not repeated here.

It is important to note that whilst alterations to the mode mask have allowed areas
of the earth’s land surfaces originally overflown in LRM mode to be altered to SAR or
SIN mode, there is a paucity of SAR mode data over desert surfaces.

2.3 Retrieval Strategy

Determining surface soil moisture from instruments which actively illuminate the
earth’s surface has primarily been performed using Synthetic Aperture Radar, where
the technique is well advanced (e.g. Dobson & Ulaby., 1986 ; Hallikainen et.al., 1985,
Engman & Chauhan (1995), Dobson et.al., 1984;). The principal constraint on this
approach is the requirement to populate the theoretical equations with a plethora of
information on surface constituents and surface roughness; this requires either
detailed information on the surface or a series of assumptions of surface
characteristics to be made in order to obtain a solution (e.g. Pathe et al, 2009;
Mladenova et al, 2010).

The possibility of utilising satellite radar altimetry to determine soil moisture has
been considered for decades (Guzkowska et al., 1990). However, moving from a
theoretical possibility to practical application has been problematic, primarily
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because similar constraints exist as for SAR soil moisture in the theoretical
equations, with the requirement to populate the equations with detailed
understanding of surface composition and physical structure. Thus this possibility
was not progressed until comparatively recently.

The key to overcoming these constraints is to calculate satellite radar altimeter
backscatter by retracking the waveforms, calculating the backscatter, and then
combine results from multiple orbits and several satellite missions to yield a
backscatter model. This approach is possible because altimeters are nadir-pointing.
Screening, editing and reconciling these disparate datasets, and then regressing all
data to ‘dry earth’ conditions then allows the derivation of Dry Earth ModelS
(DREAMS) over desert and semi-arid terrain (Berry & Carter, 2011; 2010; Berry et
al,, 2013; Berry et al., 2012).

Overflying these models with satellite radar altimetry then allows derivation of
surface soil moisture for profiles across the landscape underlying the satellite tracks
(ibid). Because, even under dry conditions, the earth’s physical surface
characteristics change rapidly spatially, this approach still does not capture the full
extent of surface changes. Additionally, whilst for many surfaces, the backscatter
changes with increasing soil moisture, and this allows the derivation of soil surface
moisture, salars and smooth surfaces containing mineral salts (such as dry
riverbeds) always present bright targets and are typically linear features which are
sampled differently at each overpass of the satellite. These features must therefore
be excluded from the DREAMS by filtering and masking (ibid). Clearly, any rivers or
lakes must also be screened out, as must surrounding terrain that never becomes
entirely dry. Rough terrain returns widely varying backscatter values even from
spatially adjacent points (such as repeat passes, constrained to a deadband of +/-
1km) and so any significant topographic features must also be excluded from the
DREAMs. Using this approach, an ESA funded pilot study has been successfully
completed which provides surface soil moisture estimates from ERS2 and Envisat
satellite radar altimetry over desert regions (Berry et al.,, 2012; SMALT; 2014).
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3. Algorithm Description

3.1 Theoretical Description

3.1.1 Physics of the Problem

Over ocean, the surface backscatter retrieved by satellite radar altimeters is
overwhelmingly dominated by the wave climate and a theoretical model relates the
arrival time, noise, backscatter and instrument off-pointing (e.g. Brown, 1977;
Challenor, & Srokosz, 1989; Gémez-Enri et al., 2007). With the SRAL instrument, a
theoretical model has also been derived (Martin-Puig & Ruffini, 2009) to relate these
quantities for SAR waveformes.

Over the earth’s land surfaces, theoretical models exist for the response retrieved by
Synthetic Aperture Radar, which has been studied for many years. First work in this
field showed that, in general, backscatter is strongly dependant on surface
roughness, particularly close to nadir, for hh polarisation, (e.g. Ulaby et.al. (1978)).
Dobson & Ulaby (1981) examined the relationship between soil tension and
backscatter with angle of illumination; however the smallest angle considered was
10 degrees. A series of subsequent studies enhanced the understanding of SAR
backscatter interpretation with frequency, angle of illumination and surface
characteristics in terms of soil moisture (e.g. Dobson et.al. (1984), Dobson & Ulaby
(1986) , Hallikainen et.al (1985), Engman & Chauhan (1995)). One clear concensus
from the SAR investigations is that temporal variability is likely to be due to
variation in moisture as, in a natural environment, moisture levels may change on
much shorter timescales than surface roughness (e.g. Dobson & Ulaby, 1986).

With satellite altimeters, the nadir pointing simplifies one part of the equations;
however, the coherent backscattering term then becomes significant. It is possible to
model the theoretical parameters to study the dependence of the backscatter, oo,
upon soil roughness, soil moisture, soil texture and instrument frequency: however,
the same detailed requirements for detailed information on target physical
characteristics as for SAR have constrained this approach. Very limited research has
been published concerning soil surface moisture from satellite radar altimetry prior
to the ESA SMALT project ( e.g. Guzkowska, 1990; Ridley & Strawbridge (1995)).

Fundamental differences between SAR and radar altimetry must be understood in
order to evaluate the applicability of SAR results to altimetry analysis; for example,
SAR backscatter values are reported to increase with increasing roughness
(Nashashibi et.al. (1996), Oh et.al. (1992)) wheras altimeter backscatter decreases
with increasing surface roughness. This is a consequence of the SAR models used by
these researchers only considering diffuse scattering, whereas coherent scattering
becomes important for the interpretation of satellite radar altimetry data. Side
looking SAR only receives the diffuse component as the coherent signal is reflected
away from the instrument.

10



Newcastle
University

Civil Engineering
&Geosciences

The theoretical approach to soil moisture derivation for satellite radar altimetry thus
encounters similar constraints as for SAR; the requirement to populate the equations
with detailed information about surface characteristics. This renders this approach
unfeasible for large-scale analyses in remote regions.

Fortunately, there is an alternative approach for the interpretation of satellite
altimetry, made possible because the instrument is nadir looking. This allows
multiple arcs of backscatter observations to be combined, and this, in turn, presents
the possibility of creating an empirical model of surface backscatter under dry
conditions. This is a complicated process because, even over arid or semi-arid
terrain, the earth’s surface backscatter changes rapidly spatially, responding to
changes in surface roughness and composition. This is the approach taken for the
ESA SMALT project (Berry et al., 2012; SMALT, 2014). A brief summary of the data
processing approach is included here.

The first step is the derivation of Dry Earth ModelS (DREAMS) for desert areas (ibid).
The SMALT DREAM for the Simpson desert is illustrated in Figure 1. This is the full
model before masking for geographic feature exclusions.

24

275 )
135.75 138.5
Figure 1 SMALT DREAM of Simpson desert (Soil Moisture from Satellite Radar Altimetry (SMALT)

(from Berry et al., 2012)

These models can still contain signals from paleo-hydrology features, inland water,
sand dunes and terrain discontinuities e.g. mountains. These must be excluded by
additional masking before a DREAM can be used. At this stage, the DREAM is
confronted with actual data. For the ESA SMALT project, utilising ERS2 (WAP) and
Envisat (SGDR) data with a 35 day repeat cycle (ibid) an analysis of one year of
cross-calibrated recalculated backscatter from each mission was used to analyse
DREAM performance, and identify high frequency spatial anomalies not fully
captured by the DREAM ibid). Most commonly, these arise where a dry river bed or
small salar is present. Figure 2 shows a typical ERS2 analysis for one repeat track
over the Simpson desert DREAM. Here, one cycle (shown in turquoise) has elevated
backscatter difference across the DREAM, indicating that the surface had appreciable
moisture content at the time of the ERS2 overpass. Looking in more detail at these

11
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data, Figure 3 shows two subsets of the profiles where short wavelength features are
apparent in some or all tracks. These are parts of the profiles where the DREAM does
not fully capture the high frequency backscatter changes on the surface. The +/-
1km across-track orbit constraint means that the overpasses are sampling the high
frequency features differently in each cycle. Such effects will contaminate the soil

moisture estimates, and so these regions are excluded from the SMALT processing
chain.

Sigma 0 difference (db)

10
1364 1366 1368 137 1372 1374 1376
Longitude (degrees)

Figure 2 ERS2 Repeat Arc Analysis for one track - difference from Simpson DREAM

Sigma 0 difference (dlb)
Sigma 0 difference (db)

-10
36.4136.42136.44136.46136.48 136.5 136.52136.54136.56136.58 136.6 137
Longitude (degrees)

1371 1372 1373 1374 1375 1376
Longitude (degrees)

Figure 3 ERS2 Exclusions over Simpson DREAM for track in Figure 2
The effect of this additional filtering can be assessed by looking at the distribution of

the differences between the cross-calibrated ERS2 backscatter and the DREAM for
each track for each cycle before and after filtering (Figure 4).

EE—] EEr=—

80 - ) g0
w |
@l 1
20t { m | w0l
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2 o 2 ¢ 5 8 B B o o5 1 15 2 25 3 5 @
(
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Sigma 0 difference (ob) Sigma 0 difference (db)

Frequency

Figure 4 Histograms before and after exclusions for track in Figure 6 for ERS2 Cycle 13

It is clear that the filtering has been effective in removing residual contamination.
Whilst this approach cannot be taken for Cryosat2 data, it is strongly recommended
that this part of the DREAM evaluation strategy is carried out for Sentinel3, in
addition to utilising a minimum of 1 year of repeat arc data to over-populate the

12
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DREAM along the Sentinal3 repeat arcs. Further years of data should then be used
over all DREAMs to screen out residual contamination from paleo-hydrology/abrupt
changes in surface constituents/ roughness/ terrain, prior to soil moisture
estimation.

At this stage, the data are averaged along-track to obtain a stable estimate. The
extent of averaging was made variable for SMALT, in order to optimise the soil
moisture data produced over each DREAM. For illustration, the processing chain
used in SMALT is shown in Figure 5 (Berry et al,, 2012).

The lack of multiple repeat arc data for Cryosat2 means that extensive further
DREAM testing will be required using a full repeat cycle of Cryosat2 data to fully
evaluate the model and add additional masking and filtering. However, a similar
scheme in outline to that shown in Figure 5 can be utilised in principle for soil
moisture determination from Cryosat2. In detail, however, the lack of repeat arc
data means that substantive additional data screening and editing are required, in
addition to a more complex procedure to cross-calibrate Cryosat2 backscatter to the
DREAM models.

Figure 5 SMALT Processing Diagram (from Berry et al., 2012)

Utilising this approach, soil surface moisture estimates can then be calculated.

For ERS2, soil moisture estimates derived utilising a research scheme similar to that
in Figure 3 have been compared with external data to validate the soil surface
moisture derivation (Berry & Carter 2010; 2011; Berry et al, 2012) . One primary
source for validation has been the Australian AussieGRASS model (AussieGRASS
2014). A typical result for the Simpson desert validation is shown in Figure 6 for
clarity.

sssssssss

Percentage soil maisture (%)

7
6
5
4
3
2
1
o

01/1995 01/1996 01/1997 01/1998 01/1999 01/2000 01/2001 01/2002 01/2003
Date (mm/yyyy)

Figure 6 Simpson desert ERS2 SMALT soil moisture estimates with AussieGRASS model (from Berry et al,
2012)
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3.1.2 Re-crafting DREAMS for Cryosat2

Cryosat2 does not have a short repeat orbit, and so the techniques utilised to
optimise soil moisture retrieval from Cryosat2 altimeter backscatter have to be
modified. The DREAMs must be significantly enhanced to the point where they can
be utilised without repeat arc information, and the screening and editing
methodology must be enhanced to identify and then exclude short wavelength
model errors as well as short wavelength features in the Cryosat2 backscatter
profiles not well captured by the DREAMs.

Figure 7 Simpson desert ERS1 Crossover Locations for DREAMcrafting

The first stage of this work has been to assess the desert characteristics and select
best DREAMS for re-crafting for use without repeat arc filtering.

The Simpson desert (Fig. 7) was selected as this has been the primary calibration
site for land backscatter across multiple altimeter missions for soil moisture
derivation.

The Tenere desert within the vast expanse of the Sahara was chosen as the DREAM
performance was stable across the model when confronted with multi-mission
satellite altimeter backscatter data. Thus the Tenere is a good choice for non-repeat
missions.

Whilst the Kalahari desert represents a very difficult and challenging target for a
DREAM, even with a repeat arc mission, the environmental importance of this region
necessitates its inclusion. However, it has taken much new research to re-craft the
model to a level where non-repeat data could be utilised. On a practical note, the fact
that this desert experiences significant rainfall for several months each year means
that non-zero soil moisture should be sampled by Cryosat2 in any year of operation.

The DREAM models selected underwent four stages of model re-crafting; sample
results are illustrated here for the ERS1-GM dataset. The final models utilise multi-
mission datasets from ERS1, ERS2, Envisat and Jason1. Example results are shown
for the Simpson desert in Figures 8 & 9. Whilst the rapid short wavelength variation

14
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in desert backscatter precludes using crossover adjustment to create a DREAM, the
aggregated statistics still give a measure of model enhancements.

Figure 8 Analysis during DREAM crafting for Simpson desert (Berry, Dowson & Carter 2013

Simpson Crossover Stage Analysis

processing Stage

Figure 9 Simpson RMS reduction during DREAM crafting (ibid)

Figure 8 shows the gradual improvement in crossover difference histograms during
model crafting for the Simpson desert; Figure 9 shows the corresponding crossover
RMS reduction. The final model for the Simpson desert is illustrated in Figure 10,
masked to exclude the irregular dunefields where backscatter characteristics change

too rapidly.

15
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Sinpaon ERSLON Wosked Nodel

Figure 10 Masked DREAM of Simpson Desert after Enhancements

3.1.3 Mathematical Description of the Algorithm

The processing is in two parts. The first part processes sequential records from one

pass over a DREAM. The second analyses the sequence to produce soil moisture
estimates from this pass.

Stage 1 Individual Record Processing

The flow diagram for Stage 1 processing is shown in Figure 11.

— Exclude wavef |
A 4
‘ Apply cross- ‘
Cryosat2 Waveforn  paeedy] Retrieve DREAM RS | Write record to
Record analysis > value X file
v \ scaling factors.
Yes
Auxiliary Ausiliary Cryosat2
datafile datafile recordset

Figure 11 Flow chart for Stage 1 Processing

The processing stages are outlined here.

Waveform Analysis

Input record from the Cryosat2 L1B product; check waveform for
significant power present and to exclude waveforms where the leading edge
is missing. Check all error flags and exclude flagged records from further

16
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Analyse Cryosat2 waveform using the OCOG parameterisation:
Calculate waveform width (W) and corrected amplitude (A).

Where

i is bin number

pi is waveform power in bin i

n; and ny are the lower and upper aliasing exclusion limits

Note that waveform power is assumed transformed to microwatts prior to
calculation.

This approach is noise-tolerant and gives an adequate representation of backscatter
for this purpose for waveforms from diffusely reflecting desert surfaces. When wet,
these surfaces become brighter and again, OCOG gives an adequate corrected
amplitude estimate for this purpose as the filtering excludes very bright returns,
although this algorithm is not generally recommended for land height retracking.

Compare with empirically determined lower and upper thresholds for amplitude A
(Avand Ay) and width W (Wy, and Wy) and exclude waveforms outside these ranges.
The purpose of this filter is to exclude echoes returned from bright targets, either
salar or surface water, very low power returns, and, as far as possible, echoes from
rough/sloping surfaces remaining within the masked DREAMs.

Retrieve DREAM Value
Calculate og_cryusing equation of form:

0o0_cry =10 LOG1o(Amplitude/Sig_A) + Sig_B

17
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where Sig_A and Sig_B are constants in the IPF2 configuration file (Cryosat Product
Handbook, 2012).

Using latitude and longitude of record, retrieve DREAM value for overflown pixel. If
pixel value set to Masked then exclude record from further analysis.

Apply Cross-Calibration

Apply pre-determined cross-calibration scaling factors from auxiliary datafile to re-
reference oo_cry to the DREAM backscatter range (DREAMS are created with an offset
to all values to keep the DREAM backscatter always positive). An auxiliary datafile is
therefore utilised to adjust the mission recalculated backscatter to the correct range
for each DREAM.

Oocry_AD] = Oocry + Offset
Calculate difference for each altimeter point from corresponding DREAM pixel.
Oodiff = OO0CRY_AD] - O0ODREAM

Error trap. Where ot >LIMIT2, exclude point from further analysis. This test is
required to allow for the contingency that the full variation in surface characteristics
may not be successfully captured by the model. For Sentinel3, repeat arc analysis
and model masking can be utilised, at which point this test may become redundant.

Stage 2 Record Sequence Processing

At this stage records form one pass over the DREAM are analysed. The processing
scheme is shown in Fig. 12, and the steps are described below.

Soil
C Iculate mean lcul il .
ryosat Calculate mea ; Ca cu‘ate soil P T
records et and RMS moisture -

Parameter Parameter
File File

Figure 12 Flow Chart for Stage 2 Processing
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Calculate Mean and RMS
Where ogirf < LIMIT1, pass values to the averaging algorithm.

Read parameter file for number of points to be averaged along-track. Create mean
value Omean and RMS Orms.

Initial settings for this average will be for the whole pass over a DREAM, yielding a
track_average soil moisture estimate from the processing chain. However, it may be
possible to increase the spatial resolution; this will be determined after the
processing scheme has been confronted with multiple passes of Cryosat2 data over
each desert. Thus the configuration allows for multiple soil moisture estimates to be
created along one pass. It is also noted that the necessary extent of averaging may
vary between DREAMS. The Simpson DREAM with previous altimeter missions
allowed the highest product spatial resolution (SMALT, 2014), and the Kalahari
desert the lowest (ibid).

Calculate Soil Moisture

Reading parameter values from parameter file, transform to first soil surface
moisture estimate using equation of form:

Soil_Moisture = M1*oqig+ M2

This equation is appropriate for soil moisture less than approximately 5% (saturated
surface soil moisture is approximately 8%).. This equation may be replaced by a
more sophisticated equation after testing over a range of soil surface moisture
conditions. The reason for taking this approach is that to utilize the more
complicated equation and have it perform satisfactorily requires sampling the
Cryosat2 backscatter over the DREAMS through a range of surface soil moisture
conditions. Because the terrain is arid or semi-arid, multiple years of data may need
to be amassed before the equation empirically determined constants can be
sufficiently well determined. For Sentinel3 it is expected that this tuning can be
completed more rapidly, as the presence of repeat arc data allows more direct
comparisons within a constrained ribbon of ground track: one year of data has been
sufficient to form a baseline with prior altimeter missions with repeat cycles of 10-
35 days.
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3.1.4 Parameter Description
Key parameters used in this processing are listed in Table 2.

Table 2 Parameter summary table

Symbol Descriptive Name | 1/0 Origin
O0CRY Sigma0 value | Internal | Calculated in processing
recalculated from
waveform
amplitude  using
scaling factors
Sig A Scaling parameter | Input From IPF2 configuration file
for backscatter
calculation
Sig B Scaling parameter | Input From IPF2 configuration file
P; Waveform power | Input Input from Cryosat2 L1B
in bin i datafile and rescaled to
microwatts
i Bin number Input Assigned at Cryosat2 L1B data
read-in
A Waveform Internal | Calculated in processing
Amplitude
\ Waveform Width | Internal | Calculated in processing
O0CRY_AD] Oocry scaled for | Internal
DREAM
comparison
oodiff SigmaO difference | Internal | Calculated in processing
from DREAM
O0DREAM Sigma0 value from | Internal | Input from DREAM
DREAM pixel
Omean Mean Sigma0 Internal
Orms RMS of mean | Internal | May be output to inform error
Sigma0 estimates
Soil_Moisture Percentage soil | Output | Calculated in processing
moisture estimate

Parameters from the Auxiliary Datafile input datafile of empirical values required for
calculation are shown in Table 3. Note that these values may be different for each
desert; thus a separate set of values will be associated with each desert DREAM.
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Table 3 Parameter File List

Name Units Comment

AL Microwatts Empirically  determined
amplitude lower limit

Ay Microwatts Empirically  determined
amplitude upper limit

WL Bins Empirically  determined
width lower limit

Wy Bins Empirically  determined
width upper limit

Masked dB Exotic  unit set to
exclusion value in DREAM

Offset dB Exotic unit set for each
DREAM

Limit1 dB Exotic unit set for each
DREAM

Limit2 dB Exotic unit set for each
DREAM

M1 None Scaling factor 1

M2 None Scaling factor 2

N_points None Number of points used to
create Omean

Values are read separately for each desert to allow cross-calibration to each model,
and to allow the potential to change exclusion criteria according to model behaviour.

3.1.5 Error Budget Estimates

Forming error estimates arising from the DREAM is difficult without repeat arcs. It is
possible to utilise the DREAM statistics to estimate the uncertainty in the model for
each DREAM. oo must be cross-calibrated to each model before soil moisture can be
derived, and necessary smoothing, and spike exclusions performed. Whilst initial
estimates can be made using Orms, this will only capture the along-track variation
compared to the DREAM. For a more complete analysis, large amounts of Cryosat2
data must be processed to challenge both the DREAMs and the processing
algorithms.

3.2 Practical Considerations

This algorithm is appropriate for desert and semi-arid areas. The accuracy of the
soil moisture estimate is critically dependent on the quality of each DREAM. Whilst
the algorithm has been tested using Cryosat2 LRM data (see section 3.2.1) the S.
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Africa cross-comparison work indicates that SAR data should also be appropriate for
this algorithm.

3.2.1 Calibration and Validation
In order to utilise this approach, cross-calibration is required for each desert
between the recalculated oo estimate and the DREAM.

3.2.1.1 Simpson DREAM First Assessment with Cryosat2 data

Calculating the backscatter from Cryosat2 LRM data and then comparing with the
DREAM over the Simpson desert allowed a first cross-calibration with the DREAM to
be carried out. Further more extensive cross-calibration with a minimum of 6
months of data will be required to complete this activity. A typical example track is
shown in Figure 13, with a vertical offset to aid comparison. Here, the DREAM has
been masked where dunefields are present. The requirement for this is clear from
Figure 13; the backscatter values from Cryosat2 are seen to oscillate widely outside
the DREAM model region. In contrast, the DREAM model region backscatter is stable
and presents a good comparison. However, additional masking is advisable at the
LHS of the plot, where the DREAM values are changing quite rapidly, and more
variability is seen in the Cryosat2 backscatter values.

35
ShJ2.0pciea-colo0r Simpeon ERSIGM masked model RATE! using 7815008781010}
'CRY27003383-004607_simpson_ERS1GM_masked_model. RATS’ using 7:($1==33987$22:1/0}
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Figure 13 Cryosat2 example track across Simpson DREAM (Cryosat2 sigma0 red, DREAM green; vertical
offset for clarity)

3.2.1.2 Tenere DREAM First Assessment with Cryosat2 data

The masked model re-crafted for the Tenere desert Cryosat2 work is shown in
Figure 14.
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Figure 14 Tenere masked model re-crafted for Cryosat2

Here, a rugged terrain region is excluded within the DREAM (white enclosed area)
and further regions have been excluded in the LHS of the region. This region is more
variable in its surface characteristics than the Simpson desert, but the DREAM
exhibits stable behaviour and only intermittent exclusions are found when tested
with ERS2 backscatter. Accordingly, the enhanced model was tested with Cryosat2
recalculated backscatter, with very promising results for the cross-calibration. A
typical profile is shown in Figure 15.

Backscater (dB)
&

18
Latitude (Degrees)

Figure 15 Cryosat2 track 9red) across Tenere DREAM (green) plotted with offset for clarity

Here, more short wavelength variability in Cryosat2 backscatter is seen than for the
Simpson desert; this is expected, as the surface structures change more rapidly for
the Tenere desert. However, quite good agreement is noted between the DREAM
and the Cryosat2 recalculated backscatter. Somewhat higher variability is observed;
this is expected, as the highest frequency terrain variations are not completely
captured by the DREAM. Along-track filtering and averaging procedures are thus
required to produce stable soil moisture estimates.
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3.2.1.3 Kalahari DREAM First Assessment with Cryosat2 data
The Kalahari presents an extremely challenging target. Even with repeat arc data to
aid in model masking, deriving soil moisture estimates from the Kalahari desert is
problematic (REF SMALT). The re-crafted and masked model for the Kalahari
DREAM for Cryosat2 data is shown in Figure 16.

..............

Figure 16 Kalahari re-crafted and masked model for Cryosat2

This desert presents an extremely challenging target, because the presence of water
for a few months each year makes the surface characteristics extremely variable,
with many high wavelength terrain roughness and surface constituent variations.
However, because this is such an important region for soil moisture determination,
for a variety of scientific applications, this area was included.
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Figure 17 Example comparison Cryosat2 re-calculated backscatter (red) with Kalahari DREAM (green)
plotted with offset for clarity

An example profile from Cryosat2 recalculated backscatter over the masked Kalahari
model is shown in Figure 17. The more variable nature of the surface response is
clearly seen in the DREAM model backscatter, and is echoed in the Cryosat2 profile.
However, clear correlation is seen between the DREAM and the Cryosat2 data, which
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is extremely encouraging, and indicates that this desert region can be utilised for
Cryosat2 soil moisture measurement. It is noted that additional screening and
filtering will be required in the processing chain, with the relevant parameters
determined after extensive testing and soil moisture calculation with a minimum of
1 year of Cryosat2 data. Whilst the model has been re-crafted, the current model
masking is derived from that required for the SMALT project (SMALT, 2014); itis
anticipated that further model masking may be required for Cryosat2 soil moisture
derivation.

3.2.1.3 South Africa LRM to SAR comparison

One remaining issue must be addressed: as all DREAM areas are overflown by
Cryosat2 in LRM mode, an analysis is required to determine whether the schema in
this document may be applicable to Cryosat2 SAR mode waveforms. Over South
Africa, both SAR and LRM data are retrieved in adjacent areas of sparsely vegetated
terrain (Figure 18) ; however this terrain is too variable both in terrain variability
and water storage capacity (lakes, rivers, irrigation) to create a DREAM. However,
this does provide an area to compare LRM mode data to SAR mode data.
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Figure 18 Cryosat2 LRM and SAR areas over South Africa

The actual data subset for this analysis is shown in Figure 19.

Googleearth

Figure 19 Cryosat2 tracks over South Africa for 3 months of data, one dot per waveform
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A waveform type analysis was carried out for all echoes shown in Figure 19. Typical
results are given in Table 5 for 4 tracks. Ocean echoes contribute to the water echo
total; however a significant number of quasi-specular returns are found, indicating
the presence of bright targets on the surface. Analysis of the distribution confirms
that these are distributed across the region, in some cases identifiable with
rivers/salars, whilst others appear to be associated with areas where agriculture is
evident. There is a high proportion of slope-affected echoes, again understandable
given the terrain variation. The dominant category for both LRM and SAR echoes in
this region is complex multi-target responses; these cannot reliably be used for soil
moisture estimation.

Table 4 Waveform analysis for four tracks in South Africa semi-arid region in Figure 19

TRACK ID A mode 0 B mode 1 C mode 0 D mode 1
Broad 22 3 3 8
echoes

Water/salar | 128 83 107 272
echoes

Slope 123 7 38 18
affected

echoes

Complex 584 493 308 682
multi-target

Flat patch 1 59 19 163

The backscatter for both LRM and SAR modes was calculated, and the cross-
calibration offsets were added from the DREAM analysis. This causes all backscatter
estimates to be biased high, but makes inter-comparison of the data shown in these
figures with those from the DREAM analysis more transparent. Figure 20 shows a
typical track containing both LRM and SAR mode data over the area in Figure 19.
High variability is apparent across this profile in both LRM and SAR modes, a result
entirely consistent with observed backscatter behaviour in the DREAM analysis
outside the DREAM model areas. Figure 21 shows the retracked height profile.
Figure 22 shows a further backscatter profile across this region and includes a
portion of ocean data for comparison (note that these values have also been offset
using the DREAM comparison offsets, hence the high values over ocean). Figure 23
shows the corresponding height profile.
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Figure 20 Cryosat2 track showing recalculated backscatter (cross-calibrated to DREAM model range) for
orbit 4583 showing LRM backscatter (green) and SAR backscatter (red)
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Figure 21 Cryosat2 track showing orthometric height across region for orbit 4583 (LRM green, SAR red
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Figure 22 Cryosat2 track showing recalculated backscatter (cross-calibrated to DREAM model range) for
orbit 4561 showing LRM backscatter (green) and SAR backscatter (red)
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Figure 23 Cryosat2 Orthometric Height for orbit 4561 across region (LRM green, SAR red)

Analysis of three months of Cryosat2 data over this region did not find any part of
the area where backscatter behaviour was sufficiently stable and predictable to
attempt to recover estimates of soil moisture from Cryosat2 even if a DREAM could
be created. This approach was therefore discontinued. However, this research
shows that the behaviour of Cryosat2 SAR mode and LRM mode recalculated
backscatter to be comprehensible in terms of surface characteristics; it is thus
concluded that calculating soil moisture utilising SAR mode waveforms is viable.

3.2.2 Quality Control and Diagnostics

It is assumed that all relevant error flags on the Cryosat2 L1B input data are read
and error flagged points are excluded from processing. The empirical tests on
permitted sigma0 range for each DREAM are set to exclude non-viable sigma0
estimates.

3.2.4 Output Product

Each output product will consist of a series of estimates of soil surface moisture
under one satellite track for one DREAM, with an associated mean time value, and
start and stop latitude and longitude coordinates for the track segment included in
each estimate. The spatial separation of these estimates is configurable within the
processing in order to obtain the optimal spatial resolution allowed by the DREAMs.
Essential output parameters for each record are listed in Table 4.
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Table 5 Output Essential Parameter List

Parameter

Unit

Segment start Longitude

Decimal degrees

Segment start Latitude

Decimal degrees

Segment End Longitude

Decimal degrees

Segment End Latitude

Decimal degrees

Year Year
Month Month
Day Day

Fraction of day at centre
of track segment

Decimal day

Soil moisture mean | Percentage soil moisture
estimate

Number of points in | none

estimate

Altimeter mode of | Textfield

operation

4. Assumptions and Limitations

4.1 Assumptions

The following assumptions were made in the design of the CSME.
1. Altimeter waveforms are available without error flags. Flagged data are excluded.

2. Altimeter waveforms have already been pre-processed, and units transformed to
microwatts. Null waveforms and incompletely captured waveforms (critically those

where the leading edge is not captured) are excluded.

3. A DREAM model is available, already masked for exclusion criteria, together with

its parameters file.

4. It is assumed on the basis of the backscatter behaviour of Cryosat2 LRM data and
the cross-comparison with Cryosat2 SAR data over S. Africa that the performance of
Cryosat2 SAR mode data will be suitable for this algorithm. However, significant
amounts of Cryosat2 SAR data will be required to calculate Parameter File List

values (Table 3).
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4.2 Limitations
The current version of this algorithm may have the following limitations.

1. DREAM availability constrains operation of this algorithm to arid or semi-arid
terrain

2. This algorithm has been developed utilising Cryosat2 LRM data as a test set, as no
SAR data are currently available over DREAM areas. Cross-comparison of SAR and
LRM data reported here indicates that the sigma0 performance is comparable and
that this approach will also be appropriate for SAR waveforms. Noisy backscatter is
noted outside the DREAM model areas, even in extremely dry terrain.
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